New learning discoveries about 10261-82-2

As the paragraph descriping shows that 10261-82-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.10261-82-2,1,5-Naphthyridin-2(1H)-one,as a common compound, the synthetic route is as follows.,10261-82-2

A 250 mL round bottomed flask charged with 1,5-naphthyridin-2(1H)-one (2.98 g, 20.37 mmol) and phosphorus oxychloride (40 ml, 437 mmol) was heated at 100 C. for 3 h. The reaction was cooled to room temperature and excess POCl3 was removed in vacuo. The residue was poured onto ice and neutralized with NaHCO3. The mixture was extracted with DCM (4*) and the combined organic layers were evaporated onto silica gel and purified by flash chromatography (ISCO (80 gram)) eluting with EtOAc:DCM (0:1?1:4) to give 1.08 g (32%, 2 steps) of a light-yellow amorphous solid. ESI-MS 164.9, 166.9 [M+1].

As the paragraph descriping shows that 10261-82-2 is playing an increasingly important role.

Reference£º
Patent; AMGEN INC.; Allen, Jennifer R.; Amegadzie, Albert; Andrews, Kristin L.; Brown, James; Chen, Jian J.; Chen, Ning; Harrington, Essa Hu; Liu, Qingyian; Nguyen, Thomas T.; Pickrell, Alexander J.; Qian, Wenyuan; Rumfelt, Shannon; Rzasa, Robert M.; Yuan, Chester Chenguang; Zhong, Wenge; US2013/225552; (2013); A1;,
1,8-Naphthyridine – Wikipedia
1,8-Naphthyridine | C8H6N2 – PubChem

Share a compound : 10261-82-2

10261-82-2, As the rapid development of chemical substances, we look forward to future research findings about 10261-82-2

1,5-Naphthyridin-2(1H)-one, cas is 10261-82-2, it is a common heterocyclic compound, the naphthyridine compound, its synthesis route is as follows.

To a solution of 1.2 g of 1,5-naphthyridin-2(1H)-one in 24 mL of N,N-dimethylformamide, 0.82 g of 60% sodium hydride was added at 60C, and the mixture was stirred at the same temperature for 20 minutes, and then stirred at 55 to 80C for 30 minutes. Thereto was added 1.3 mL of 2-bromomethyl-1,3-dioxolan at 60C, the temperature of the reaction mixture was increased to 100C over 4 hours, and to the reaction mixture, 2.3 g of potassium carbonate was added, and the mixture was stirred at the same temperature for 3 hours. After leaving overnight, 0.85 mL of 2-bromomethyl-1,3-dioxolan and 0.33 g of 60% sodium hydride were added thereto, and the mixture was stirred at 70 to 75C for 1 hour 30 minutes. The reaction mixture was cooled to room temperature, water, sodium chloride and chloroform were then added thereto, and the organic layer was separated. The aqueous layer was extracted with chloroform. The organic layer and the extract were combined, the resultant solution was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The resultant residue was purified by silica gel column chromatography using an eluent of chloroform:methanol = 49:1 to obtain 1.1 g of 1-(1,3-dioxolan-2-ylmethyl)-1,5-naphthyridin-2(1H)-one as a light yellow solid. 1H-NMR (CDCl3) delta: 3.82-3.94 (2H, m), 3.96-4.05 (2H, m), 4.52 (2H, d, J = 4.2 Hz), 5.22 (1H, t, J = 4.2 Hz), 6.94 (1H, d, J = 9.8 Hz), 7.45 (1H, dd, J = 8.6, 4.5 Hz), 7.90-7.98 (2H, m), 8.54 (1H, dd, J = 4.5, 1.2 Hz)

10261-82-2, As the rapid development of chemical substances, we look forward to future research findings about 10261-82-2

Reference£º
Patent; TOYAMA CHEMICAL CO., LTD.; Taisho Pharmaceutical Co. Ltd.; EP2022793; (2009); A1;,
1,8-Naphthyridine – Wikipedia
1,8-Naphthyridine | C8H6N2 – PubChem

Brief introduction of 10261-82-2

The synthetic route of 10261-82-2 has been constantly updated, and we look forward to future research findings.

10261-82-2, 1,5-Naphthyridin-2(1H)-one is a naphthyridine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

10261-82-2, 0001-2 Phosphorus oxychloride (8.3 mL) was added to 1,5-naphthyridin-2-ol (2.76 g), followed by stirring at 100 C. for 5 hours. The reaction mixture was cooled to room temperature, and added dropwise to a mixture of ethyl acetate (30 mL), water (30 mL), and sodium carbonate (9.57 g) over a period of 1 hour in an ice bath. Water (10 mL) was added thereto, and sodium carbonate was added thereto, followed by adjusting the pH of the resultant product to 8.3. The resultant product was stirred at room temperature for 10 minutes, and ethyl acetate (270 mL) and water (200 mL) were added thereto. The organic layer was collected by separation, and the aqueous layer was extracted two times with ethyl acetate (200 mL). The organic layer and the extraction liquid were combined, the resultant product was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure, thereby obtaining 2-chloro-1,5-naphthyridine (2.86 g) as a pale yellow solid. MS m/z (M+H): 165.

The synthetic route of 10261-82-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; FUJIFILM Corporation; FURUYAMA, Hidetomo; KURIHARA, Hideki; TERAO, Takahiro; NAKAGAWA, Daisuke; TANABE, Shintaro; KATO, Takayuki; YAMAMOTO, Masahiko; SEKINE, Shinichiro; MASHIKO, Tomoyuki; INUKI, Shinsuke; UEDA, Satoshi; US2015/322063; (2015); A1;,
1,8-Naphthyridine – Wikipedia
1,8-Naphthyridine | C8H6N2 – PubChem

Downstream synthetic route of 10261-82-2

As the paragraph descriping shows that 10261-82-2 is playing an increasingly important role.

10261-82-2, 1,5-Naphthyridin-2(1H)-one is a naphthyridine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,10261-82-2

To a suspension of Intermediate 3 (5.9 g) in dry DME (180 ml) and dry DMF (45 ml) at 0C under argon was added in portions NaH (60% w:w dispersion in mineral oil, 3.2 g). After stirring for 45 minutes, the mixture was treated with lithium bromide (8.8 g) and the suspension was allowed to warm to room temperature. After stirring for 45 minutes, the mixture was treated with allyl bromide (7 ml) and then stirred at 65C for 3 h. The mixture was cooled to room temperature and concentrated under reduced pressure, then t-BuOMe (300 ml) was added and the mixture was then washed with 1 N NH4Cl (200 ml). The combined aqueous phases were extracted with t-BuOMe (2 x 100 ml). The organic phases were combined, washed with brine (200 ml), dried over Na2SO4, filtered and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel using a EtOAc and hexane gradient (50-75%) to give the desired product (4.29 g, 57%). To obtain an additional amount of the desired compound, the combined aqueous phases were extracted exhaustively with CH2Cl2. Then, the organic extracts were combined, dried over MgSO4, filtered and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel using a EtOAc and hexane gradient (50-75%) to give the desired product (1.5 g, 20%). [ES MS] m/z 187 (MH+).

As the paragraph descriping shows that 10261-82-2 is playing an increasingly important role.

Reference£º
Patent; GLAXO GROUP LIMITED; EP2080761; (2009); A1;,
1,8-Naphthyridine – Wikipedia
1,8-Naphthyridine | C8H6N2 – PubChem

Application of 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid

10261-82-2, As the rapid development of chemical substances, we look forward to future research findings about 10261-82-2

A common heterocyclic compound, the naphthyridine compound, name is 1,5-Naphthyridin-2(1H)-one,cas is 10261-82-2, mainly used in chemical industry, its synthesis route is as follows.

To a suspension of Intermediate 3 (5.9 g) in dry DME (180 ml) and dry DMF (45 ml) at 0C under argon was added in portions NaH (60% w:w dispersion in mineral oil, 3.2 g). After stirring for 45 minutes, the mixture was treated with lithium bromide (8.8 g) and the suspension was allowed to warm to room temperature. After stirring for 45 minutes, the mixture was treated with allyl bromide (7 ml) and then stirred at 65C for 3 h. The mixture was cooled to room temperature and concentrated under reduced pressure, then t-BuOMe (300 ml) was added and the mixture was then washed with 1 N NH4Cl (200 ml). The combined aqueous phases were extracted with t-BuOMe (2 x 100 ml). The organic phases were combined, washed with brine (200 ml), dried over Na2SO4, filtered and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel using a EtOAc and hexane gradient (50-75%) to give the desired product (4.29 g, 57%). To obtain an additional amount of the desired compound, the combined aqueous phases were extracted exhaustively with CH2Cl2. Then, the organic extracts were combined, dried over MgSO4, filtered and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel using a EtOAc and hexane gradient (50-75%) to give the desired product (1.5 g, 20%). [ES MS] m/z 187 (MH+).

10261-82-2, As the rapid development of chemical substances, we look forward to future research findings about 10261-82-2

Reference£º
Patent; GLAXO GROUP LIMITED; EP2080761; (2009); A1;,
1,8-Naphthyridine – Wikipedia
1,8-Naphthyridine | C8H6N2 – PubChem

Application of 6-Bromo-2-methylbenzo[d]oxazole

10261-82-2, As the rapid development of chemical substances, we look forward to future research findings about 10261-82-2

The naphthyridine compound, cas is 10261-82-2 name is 1,5-Naphthyridin-2(1H)-one, mainly used in chemical industry, its synthesis route is as follows.

To the compound 0001-1 (2.76 g), phosphorous oxychloride (8.3 mL) was added, and the mixture was stirred at 100C for 5 hours. The reaction solution which had been cooled to room temperature was added dropwise to a mixture of ethyl acetate (30 mL), water (30 mL), and sodium carbonate (9.57 g) in an ice-cooling bath over one hour. Further, water (10 mL) was added thereto, and sodium carbonate was added thereto until the pH reached 8.3. After stirring at room temperature for 10 minutes, the resulting mixture was subjected to liquid separation by the addition of ethyl acetate (270 mL) and water (200 mL). Further, the aqueous layer was extracted with ethyl acetate (200 mL) twice. The collected organic layer was dried over sodium sulfate and the solvent was evaporated under reduced pressure to obtain a compound 0001-2 (2.86 g) was obtained as a pale yellow solid. 1H-NMR (DMSO-d6) delta: 9.05 (1H, dd), 8.50 (1H, dd, J=8.9), 8.41 (1H, ddd), 7.87, (1H, d), 7.86 (1H, m).

10261-82-2, As the rapid development of chemical substances, we look forward to future research findings about 10261-82-2

Reference£º
Patent; FUJIFILM Corporation; FURUYAMA, Hidetomo; KURIHARA, Hideki; FURUYA, Kentarou; TERAO, Takahiro; SEKINE, Shinichirou; NAKAGAWA, Daisuke; EP2727920; (2014); A1;,
1,8-Naphthyridine – Wikipedia
1,8-Naphthyridine | C8H6N2 – PubChem

Introduction of a new synthetic route about 10261-82-2

With the rapid development of chemical substances, we look forward to future research findings about 10261-82-2

1,5-Naphthyridin-2(1H)-one, cas is 10261-82-2, it is a common heterocyclic compound, the naphthyridine compound, its synthesis route is as follows.

To the compound 0001-1 (2.76 g), phosphorous oxychloride (8.3 mL) was added, and the mixture was stirred at 100C for 5 hours. The reaction solution which had been cooled to room temperature was added dropwise to a mixture of ethyl acetate (30 mL), water (30 mL), and sodium carbonate (9.57 g) in an ice-cooling bath over one hour. Further, water (10 mL) was added thereto, and sodium carbonate was added thereto until the pH reached 8.3. After stirring at room temperature for 10 minutes, the resulting mixture was subjected to liquid separation by the addition of ethyl acetate (270 mL) and water (200 mL). Further, the aqueous layer was extracted with ethyl acetate (200 mL) twice. The collected organic layer was dried over sodium sulfate and the solvent was evaporated under reduced pressure to obtain a compound 0001-2 (2.86 g) was obtained as a pale yellow solid. 1H-NMR (DMSO-d6) delta: 9.05 (1H, dd), 8.50 (1H, dd, J=8.9), 8.41 (1H, ddd), 7.87, (1H, d), 7.86 (1H, m).

With the rapid development of chemical substances, we look forward to future research findings about 10261-82-2

Reference£º
Patent; FUJIFILM Corporation; FURUYAMA, Hidetomo; KURIHARA, Hideki; FURUYA, Kentarou; TERAO, Takahiro; SEKINE, Shinichirou; NAKAGAWA, Daisuke; EP2727920; (2014); A1;,
1,8-Naphthyridine – Wikipedia
1,8-Naphthyridine | C8H6N2 – PubChem

Introduction of a new synthetic route about 10261-82-2

With the rapid development of chemical substances, we look forward to future research findings about 10261-82-2

1,5-Naphthyridin-2(1H)-one, cas is 10261-82-2, it is a common heterocyclic compound, the naphthyridine compound, its synthesis route is as follows.

To a suspension of Intermediate 3 (5.9 g) in dry DME (180 ml) and dry DMF (45 ml) at O0C under argon was added in portions NaH (60% w:w dispersion in mineral oil, 3.2 g). After stirring for 45 minutes, the mixture was treated with lithium bromide (8.8 g) and the suspension was allowed to warm to room temperature. After stirring for 45 minutes, the mixture was treated with allyl bromide (7 ml) and then stirred at 650C for 3 h. The mixture was cooled to room temperature and concentrated under reduced pressure, then t- BuOMe (300 ml) was added and the mixture was then washed with 1 N NH4CI (200 ml).The combined aqueous phases were extracted with f-BuOMe (2 x 100 ml). The organic phases were combined, washed with brine (200 ml), dried over Na2SO4, filtered and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel using a EtOAc and hexane gradient (50-75%) to give the desired product (4.29 g, 57%). To obtain an additional amount of the desired compound, the combined aqueous phases were extracted exhaustively with CH2CI2. Then, the organic extracts were combined, dried over MgSO4, filtered and evaporated under reduced pressure. Theresidue was purified by column chromatography on silica gel using a EtOAc and hexane gradient (50-75%) to give the desired product (1.5 g, 20%). [ES MS] m/z 187 (MH+).

With the rapid development of chemical substances, we look forward to future research findings about 10261-82-2

Reference£º
Patent; GLAXO GROUP LIMITED; ALEMPARTE-GALLARDO, Carlos; BARROS-AGUIRRE, David; CACHO-IZQUIERDO, Monica; FIANDOR-ROMAN, Jose Maria; LAVANDERA DIAZ, Jose Luis; REMUINAN-BLANCO, Modesto Jesus; WO2010/81874; (2010); A1;,
1,8-Naphthyridine – Wikipedia
1,8-Naphthyridine | C8H6N2 – PubChem

New learning discoveries about 10261-82-2

As the paragraph descriping shows that 10261-82-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.10261-82-2,1,5-Naphthyridin-2(1H)-one,as a common compound, the synthetic route is as follows.

To the compound 0001-1 (2.76 g), phosphorous oxychloride (8.3 mL) was added, and the mixture was stirred at 100C for 5 hours. The reaction solution which had been cooled to room temperature was added dropwise to a mixture of ethyl acetate (30 mL), water (30 mL), and sodium carbonate (9.57 g) in an ice-cooling bath over one hour. Further, water (10 mL) was added thereto, and sodium carbonate was added thereto until the pH reached 8.3. After stirring at room temperature for 10 minutes, the resulting mixture was subjected to liquid separation by the addition of ethyl acetate (270 mL) and water (200 mL). Further, the aqueous layer was extracted with ethyl acetate (200 mL) twice. The collected organic layer was dried over sodium sulfate and the solvent was evaporated under reduced pressure to obtain a compound 0001-2 (2.86 g) was obtained as a pale yellow solid. 1H-NMR (DMSO-d6) delta: 9.05 (1H, dd), 8.50 (1H, dd, J=8.9), 8.41 (1H, ddd), 7.87, (1H, d), 7.86 (1H, m).

As the paragraph descriping shows that 10261-82-2 is playing an increasingly important role.

Reference£º
Patent; FUJIFILM Corporation; FURUYAMA, Hidetomo; KURIHARA, Hideki; FURUYA, Kentarou; TERAO, Takahiro; SEKINE, Shinichirou; NAKAGAWA, Daisuke; EP2727920; (2014); A1;,
1,8-Naphthyridine – Wikipedia
1,8-Naphthyridine | C8H6N2 – PubChem

Brief introduction of 10261-82-2

The synthetic route of 10261-82-2 has been constantly updated, and we look forward to future research findings.

10261-82-2, 1,5-Naphthyridin-2(1H)-one is a naphthyridine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To the compound 0001-1 (2.76 g), phosphorous oxychloride (8.3 mL) was added, and the mixture was stirred at 100C for 5 hours. The reaction solution which had been cooled to room temperature was added dropwise to a mixture of ethyl acetate (30 mL), water (30 mL), and sodium carbonate (9.57 g) in an ice-cooling bath over one hour. Further, water (10 mL) was added thereto, and sodium carbonate was added thereto until the pH reached 8.3. After stirring at room temperature for 10 minutes, the resulting mixture was subjected to liquid separation by the addition of ethyl acetate (270 mL) and water (200 mL). Further, the aqueous layer was extracted with ethyl acetate (200 mL) twice. The collected organic layer was dried over sodium sulfate and the solvent was evaporated under reduced pressure to obtain a compound 0001-2 (2.86 g) was obtained as a pale yellow solid. 1H-NMR (DMSO-d6) delta: 9.05 (1H, dd), 8.50 (1H, dd, J=8.9), 8.41 (1H, ddd), 7.87, (1H, d), 7.86 (1H, m).

The synthetic route of 10261-82-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; FUJIFILM Corporation; FURUYAMA, Hidetomo; KURIHARA, Hideki; FURUYA, Kentarou; TERAO, Takahiro; SEKINE, Shinichirou; NAKAGAWA, Daisuke; EP2727920; (2014); A1;,
1,8-Naphthyridine – Wikipedia
1,8-Naphthyridine | C8H6N2 – PubChem