New learning discoveries about 1309774-03-5

As the paragraph descriping shows that 1309774-03-5 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1309774-03-5,7-Bromo-2-chloro-1,5-naphthyridine,as a common compound, the synthetic route is as follows.

1309774-03-5, 0155-1 A mixture of 7-bromo-2-chloro-1,5-naphthyridine (50 mg), 5-methoxypyridine-3-amine (25 mg), tris(dibenzylideneacetone)dipalladium(0) (19 mg), 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (24 mg), and cesium carbonate (33 mg) in 1,4-dioxane (1 mL) was stirred at 140 C. for 30 minutes using a microwave reaction apparatus. The reaction mixture was cooled to room temperature, the insolubles were filtered off using celite, and the obtained solution was purified by silica gel column chromatography (methanol-ethyl acetate, NH silica), thereby obtaining N2,N7-bis(5-methoxypyridin-3-yl)-1,5-naphthyridine-2,7-diamine (15 mg). 1H-NMR(CDCl3/CD3OD=4/1) delta: 8.44 (1H, d, J=2.7 Hz), 8.37 (2H, brs), 8.07 (1H, d, J=2.7 Hz), 7.99 (1H, d, J=9.0 Hz), 7.88 (2H, brs), 7.21 (2H, brs), 7.02 (1H, d, J=9.0 Hz), 3.91 (3H, s), 3.89 (3H, s). MS m/z (M+H): 375.

As the paragraph descriping shows that 1309774-03-5 is playing an increasingly important role.

Reference£º
Patent; FUJIFILM Corporation; FURUYAMA, Hidetomo; KURIHARA, Hideki; TERAO, Takahiro; NAKAGAWA, Daisuke; TANABE, Shintaro; KATO, Takayuki; YAMAMOTO, Masahiko; SEKINE, Shinichiro; MASHIKO, Tomoyuki; INUKI, Shinsuke; UEDA, Satoshi; US2015/322063; (2015); A1;,
1,8-Naphthyridine – Wikipedia
1,8-Naphthyridine | C8H6N2 – PubChem